https://www.nextdayscience.com/

Next Day Science Blog

showing 1 - 15 of 50 post(s)
 

Analytical Balances

Analytical Balances

The premium workmanship of the robust die-cast aluminum housing, coupled with the finest engineering materials and design, provides excellent protection against mechanical and electrical interference. This allows the balance to operate at the highest levels of precision, from the initial weigh-in period through the final result. With features such as self-calibration system and the intuitive user settable operation, the balance will handle any task you set for it. For more information, review the specifications of the individual balances. 



Lab Centrifuge concepts and application

Lab Centrifuge concepts and application

The first centrifuge was built by Alexander Prandtl in 1875 as a mean of separating cream from milk. Since then, the laboratory centrifuge developed to be a principal tool in scientific and clinical labs.

The Centrifugation concept and applications:

When an object is put in rotation around an axis, an outward radial force is applied on it. This centripetal force is used to accelerate Sedimentation, a process where denser particles move faster to the bottom, or in a centrifuge, towards an outward direction. This principle is used for several different applications in the modern lab, with the purpose of separating different constitutes within a solution:


The Comprehensive Guide to Filtration Methods

The Comprehensive Guide to Filtration Methods
There are several types of filtration methods to choose from, which include gravity or simple, hot, and vacuum. Selecting the right method depends on the nature of the experiment. This guide will provide you with an easy to follow set of criteria that will help you choose the right filtration system for the job. The following chart is useful in getting you started.

The first step is to choose the right sized filter paper, which is the most vital step for vacuum filtration, because the filter must be smaller in diameter than the Hirsch or Buchner funnel. It needs to cover the holes and sit flat on the funnel bottom and not have any creases or folds. There are two ways to fold the filter paper, which are the fluted and conventional methods.


The various types of membrane filters and their uses

The various types of membrane filters and their uses

Membrane filtration utilizes pressure in order to force water or any other kind of carrier fluid through a porous or semi-permeable membrane. This process separates the particulate matter that's suspended from the soluble and fluid components.

Membrane filters are also known as membranes are microporous films which have specific ratings for their pore sizes. These are also known as microporous filters, screens or sieves, and they keep the microorganisms or particles which are bigger than the size of their pores through the process of surface capture. On the other hand, any particles smaller than the pore size of the membrane filter are typically kept by other types of mechanisms.


Choosing the Best Filter for Your Laboratory Application

Choosing the Best Filter for Your Laboratory Application
When choosing a filter to perform various applications or obtain certain objectives, there are several things one must consider. This guide will help you choose the right filter in just a few steps. Firstly, you match the application with the best pore size for the job. Secondly, you will select the best housing material and membrane for the application. Thirdly, you will select the right membrane area to help optimize the throughput and flow rate. And lastly, choose the filter design that best fits your application.

Preparing Primary Tissue Samples or Frozen Samples for Single Cell Suspension

Preparing Primary Tissue Samples or Frozen Samples for Single Cell Suspension
One of the most critical steps in successful cell isolation is the preparation of the single cell suspension. Cell loss may occur during isolation if the sample contains cell clumps during the cell separation process. Additionally, the clumps may interfere with the proper labeling of the cells that the process is meant to target. By following a specialized protocol for harvesting and preparing the single cell suspensions from primary or frozen tissue before the process of cell separation, these issues can be avoided.

Everything you Need to Know About Autoclaving

Everything you Need to Know About Autoclaving
Autoclaving is used to ensure equipment and supplies are properly sterilized by using pressurized steam at high temperatures to eliminate the present of any microorganisms that may be present. The process is used in various industries, including dentistry, medicine, microbiology, and veterinary science. Autoclaving is a reliable process that ensures equipment and supplies are decontaminated and sterilized. The process takes between thirty minutes to an hour and reaches a high temperature of around 250 degrees Fahrenheit.

Why is it important to use serological pipettes in a medical laboratory?

Why is it important to use serological pipettes in a medical laboratory?

When you work in a medical laboratory, you'll get exposed to different kinds of lab instruments and equipment. Therefore, anybody working in medical laboratories will be familiar with serological pipettes. These are laboratory instruments used for transferring liquid from one vessel to another. They have gradations along the sides. These are important for the measurement of the quantity of liquid that's dispensed or aspirated.


What are cell culture plates?

What are cell culture plates?

Cell culture plates are used in laboratories to provide optimum conditions for cell culture. A cell culture plate provides the right conditions for the growth of cell cultures. They are usually transparent to allow visual assaying, and the dishes can be either V-shaped, flat, or round at the bottom. They often have lids to protect the samples which might be placed in multiple wells for storage, experimentation, and screening.

While not all cell types require cell culture plating and can grow well in a liquid suspension, others called adherent cells need a surface onto which to latch. Most cells that have been sampled from solid tissues are adherent, so require a cell culture plate for growth and observation.


Laboratory equipment: spreaders

Laboratory equipment: spreaders

Spreaders, often known as cell spreaders, are tools used in the laboratory that allow for samples to be smoothly spread onto a petri-dish or plate.  Chiefly used in the biological field with cell and bacterial samples, spreaders are made in three main shapes: the L-shape, the T-shape, and the triangular shape.

They are manufactured from various materials, depending on their function. These materials include glass, metal, or even plastic these days. Each of these materials has distinct advantages and disadvantages.

Glass, for example, can easily be sterilized for reuse time and time again. On the downside, though, glass is fairly easy to break. Broken glass, in turn, poses a potential danger to researchers in the laboratory. On the other hand, plastic does not need sterilization because these spreaders come ready-sterilized.


Everything You Need to Know About Plastic Laboratory Bottles

Everything You Need to Know About Plastic Laboratory Bottles

You should concern yourself when you work in laboratories, especially if you use solutions and chemicals. Containers for these chemicals should be safe for handlers. This is important to avoid any incidents that can cause injuries.

Laboratories have been relying for decades on glass bottles because they are resistant to most solutions and chemicals. However, they break easily. This property could be a safety risk, especially if their contents are dangerous. The advent of plastics has given us plastic bottles, which is a very safe alternative. These cost much less than glass bottles. Their proper care and use can give you years of dependable performance.


Everything you want to know about glassware in the lab

Everything you want to know about glassware in the lab

Glass out-performs plastic with its high chemical resistance against many substances, including acids, alkalis, organic solvents, saline solutions, and water. The only substances that can destroy glass are hydrofluoric acid, strong alkalis used at high temperatures, and concentrated phosphoric acid.

Additional advantages to using glass in the lab include its dimensional stability, even at high temperatures, and its transparency. Other advantages include the fact that many sizes of many pieces of laboratory equipment are available, and glass is easy to clean. It is suitable for reagent and chemical storage, and Pyrex, a type of glass, is resilient to heat.


The Benefits of Plastic Beakers

The Benefits of Plastic Beakers

Beakers are one of the most oft-used pieces of equipment in the laboratory. At the most basic level, beakers can hold samples of whatever you’re studying. As they come in different sizes, they can be used for a multitude of other functions, such as preserving a small chemical reaction.

Experiments that result in a liquid product utilize beakers to catch the liquid. Beakers are also used in experiments involving chromatography and are widely used in research, education, and industry.


Finding the Right Hotplate Stirrer

Finding the Right Hotplate Stirrer

Nowadays, finding the right hotplate stirrer can be a tedious task. This is because there are a lot of products available now. Before you choose a product for your laboratory, it's essential to learn more about it.

A hotplate stirrer is a device used in laboratories and its primary function is to spin or rotate a container of liquid quickly to stir its contents. Such devices are typically used in biology and chemistry. They're quieter and more efficient than motorized stirrers driven by gears. Hotplate stirrers are also smaller and easier to maintain. That is as compared to other devices used for stirring. They also include a hotplate which is essential for heating the samples.


Finding the Right Shaking Incubator

Finding the Right Shaking Incubator

Shaking incubators are also known as environmental shakers. These are a type of lab equipment which you can use for different purposes. These include solubility studies, aeration of cells, culturing of cells, and more. Such equipment provides a consistent temperature as well as orbital agitation.

You can set the shaking incubator at different speeds to promote cell growth. Usually, these types of equipment have adjustable stroke lengths. This is important for various applications and cells. It's necessary for you to understand the value of shaking incubators. To do this, let's answer some of the most common questions about them: