https://www.nextdayscience.com/

Next Day Science Blog

showing 1 - 15 of 54 post(s)
 

Personal protection equipment in the time of COVID-19

Personal protection equipment in the time of COVID-19
Health authorities are hamstrung here, because of a paucity of data. We still know far less about COVID viruses in general, and COVID-19 in particular, than we’d like. We know about how far they can travel, person to person, about how long they can survive on various surfaces and in the air, and we know sort of how they replicate. But we don’t know anything about their ability to confer immunity, or why they hit some parts of the population harder than others.

PPE Masks and Hand Sanitizer for CoronaVirus

PPE Masks and Hand Sanitizer for CoronaVirus

If you are wondering where people are buying masks and bottles of sanitizer, the answer is two-fold. Consumers can't really get this stuff without paying 5x the market price. And institutional buyers are paying 2-3x the rates they were paying 8 weeks ago. Because we work with quite a few companies who have been manufacturing and/or importing for decades, we are lucky to be able to source masks and sanitizers directly from factories in Mexico and China.

If you are interested in getting masks (KN95 or 3-ply surgical masks), or bottles of sanitizer (8oz or 16oz) please fill out our contact form.

The minimum order quantities are as follows:

  • Masks: 1,000 masks of either style.
  • Hand Sanitizer: In terms of bottles, the minimum quantity will be based on how they are shipped in a box. Likely the quantity will be around 100 bottles per box. The stuff goes quickly.


There will be different price points depending on quantities as well. The prices are literally shifting from week to week if not day to day. Most of what we are getting is arriving on a rolling ten day basis.

The fastest delivery will be 4,000 masks per order direct to your door in ten days.

Using disposable pipette tips in solid phase extraction

Using disposable pipette tips in solid phase extraction

Sample prepping gets better all the time – cleaner, faster, and cheaper. One of the reasons for better speed and cleaner sampling is the arrival of disposable polypropylene pipette tips, that you throw away after a single use. These really lower processing time, and they do away with any fear of cross-contamination.

One of the old bottlenecks in laboratory processing is solid-phase extraction. It’s entirely possible to use disposable tips for this too.

The general idea in disposable-tip extraction is that you’ve got a tip with sorbent in it, either powdered or dispersed between two disks, or ‘frits’, as they’re called, which allow bidirectional fluid flow but prevent contamination of the syringe. You can get reversed-phase sorbents, for non-polar to medium polar compounds, you can get strong cation exchanger sorbents, and weak anion exchanger sorbents, and so on. 


Cryo and cooling … confused?

Cryo and cooling … confused?

One of our popular products here at Next Day is the Cryo-Safe™ freeze controller from Bel Art. It’s a well-engineered piece of equipment. It absolutely assures a drop in cell temperature of 1°C per minute, and a lot of labs want that, at high precision.  

But where does that 1°C gradient rule come from? And is it right for every possible application?

It’s a fair question, and not every person in every lab is always clear about this. So here’s an answer, first in the form of a review of the general challenges in cryopreservation, and then a bit of discussion about cooling rates, and how they’re derived.


Analytical Balances

Analytical Balances

The premium workmanship of the robust die-cast aluminum housing, coupled with the finest engineering materials and design, provides excellent protection against mechanical and electrical interference. This allows the balance to operate at the highest levels of precision, from the initial weigh-in period through the final result. With features such as self-calibration system and the intuitive user settable operation, the balance will handle any task you set for it. For more information, review the specifications of the individual balances. 



Lab Centrifuge concepts and application

Lab Centrifuge concepts and application

The first centrifuge was built by Alexander Prandtl in 1875 as a mean of separating cream from milk. Since then, the laboratory centrifuge developed to be a principal tool in scientific and clinical labs.

The Centrifugation concept and applications:

When an object is put in rotation around an axis, an outward radial force is applied on it. This centripetal force is used to accelerate Sedimentation, a process where denser particles move faster to the bottom, or in a centrifuge, towards an outward direction. This principle is used for several different applications in the modern lab, with the purpose of separating different constitutes within a solution:


The Comprehensive Guide to Filtration Methods

The Comprehensive Guide to Filtration Methods
There are several types of filtration methods to choose from, which include gravity or simple, hot, and vacuum. Selecting the right method depends on the nature of the experiment. This guide will provide you with an easy to follow set of criteria that will help you choose the right filtration system for the job. The following chart is useful in getting you started.

The first step is to choose the right sized filter paper, which is the most vital step for vacuum filtration, because the filter must be smaller in diameter than the Hirsch or Buchner funnel. It needs to cover the holes and sit flat on the funnel bottom and not have any creases or folds. There are two ways to fold the filter paper, which are the fluted and conventional methods.


The various types of membrane filters and their uses

The various types of membrane filters and their uses

Membrane filtration utilizes pressure in order to force water or any other kind of carrier fluid through a porous or semi-permeable membrane. This process separates the particulate matter that's suspended from the soluble and fluid components.

Membrane filters are also known as membranes are microporous films which have specific ratings for their pore sizes. These are also known as microporous filters, screens or sieves, and they keep the microorganisms or particles which are bigger than the size of their pores through the process of surface capture. On the other hand, any particles smaller than the pore size of the membrane filter are typically kept by other types of mechanisms.


Choosing the Best Filter for Your Laboratory Application

Choosing the Best Filter for Your Laboratory Application
When choosing a filter to perform various applications or obtain certain objectives, there are several things one must consider. This guide will help you choose the right filter in just a few steps. Firstly, you match the application with the best pore size for the job. Secondly, you will select the best housing material and membrane for the application. Thirdly, you will select the right membrane area to help optimize the throughput and flow rate. And lastly, choose the filter design that best fits your application.

Preparing Primary Tissue Samples or Frozen Samples

Preparing Primary Tissue Samples or Frozen Samples
One of the most critical steps in successful cell isolation is the preparation of the single cell suspension. Cell loss may occur during isolation if the sample contains cell clumps during the cell separation process. Additionally, the clumps may interfere with the proper labeling of the cells that the process is meant to target. By following a specialized protocol for harvesting and preparing the single cell suspensions from primary or frozen tissue before the process of cell separation, these issues can be avoided.

Everything you Need to Know About Autoclaving

Everything you Need to Know About Autoclaving
Autoclaving is used to ensure equipment and supplies are properly sterilized by using pressurized steam at high temperatures to eliminate the present of any microorganisms that may be present. The process is used in various industries, including dentistry, medicine, microbiology, and veterinary science. Autoclaving is a reliable process that ensures equipment and supplies are decontaminated and sterilized. The process takes between thirty minutes to an hour and reaches a high temperature of around 250 degrees Fahrenheit.

Why is it important to use serological pipettes in a medical laboratory?

Why is it important to use serological pipettes in a medical laboratory?

When you work in a medical laboratory, you'll get exposed to different kinds of lab instruments and equipment. Therefore, anybody working in medical laboratories will be familiar with serological pipettes. These are laboratory instruments used for transferring liquid from one vessel to another. They have gradations along the sides. These are important for the measurement of the quantity of liquid that's dispensed or aspirated.


What are cell culture plates?

What are cell culture plates?

Cell culture plates are used in laboratories to provide optimum conditions for cell culture. A cell culture plate provides the right conditions for the growth of cell cultures. They are usually transparent to allow visual assaying, and the dishes can be either V-shaped, flat, or round at the bottom. They often have lids to protect the samples which might be placed in multiple wells for storage, experimentation, and screening.

While not all cell types require cell culture plating and can grow well in a liquid suspension, others called adherent cells need a surface onto which to latch. Most cells that have been sampled from solid tissues are adherent, so require a cell culture plate for growth and observation.


Laboratory equipment: spreaders

Laboratory equipment: spreaders

Spreaders, often known as cell spreaders, are tools used in the laboratory that allow for samples to be smoothly spread onto a petri-dish or plate.  Chiefly used in the biological field with cell and bacterial samples, spreaders are made in three main shapes: the L-shape, the T-shape, and the triangular shape.

They are manufactured from various materials, depending on their function. These materials include glass, metal, or even plastic these days. Each of these materials has distinct advantages and disadvantages.

Glass, for example, can easily be sterilized for reuse time and time again. On the downside, though, glass is fairly easy to break. Broken glass, in turn, poses a potential danger to researchers in the laboratory. On the other hand, plastic does not need sterilization because these spreaders come ready-sterilized.


Everything You Need to Know About Plastic Laboratory Bottles

Everything You Need to Know About Plastic Laboratory Bottles

You should concern yourself when you work in laboratories, especially if you use solutions and chemicals. Containers for these chemicals should be safe for handlers. This is important to avoid any incidents that can cause injuries.

Laboratories have been relying for decades on glass bottles because they are resistant to most solutions and chemicals. However, they break easily. This property could be a safety risk, especially if their contents are dangerous. The advent of plastics has given us plastic bottles, which is a very safe alternative. These cost much less than glass bottles. Their proper care and use can give you years of dependable performance.